

SWISS ONCOLOGY & HEMATOLOGY CONGRESS

# Clinical utility of thrombin generation using ST-Genesia® instrument in patients with hereditary and acquired thrombophilia

Abstract Category: Hemostasis, transfusion medicine, vascular, laboratory medicine

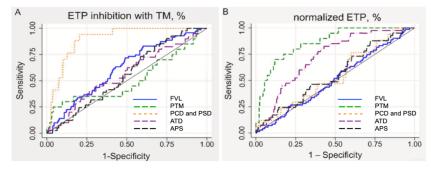
- L. Caspary 1, J. Shaw 2, O. Stalder 3, J. Brodard 1, A. Angelillo-Scherrer 1, K. Vrotniakaite-Bajerciene 1, 2
- 1 Department of Hematology and Central Hematology Laboratory, University Hospital of Bern, Bern,
- 2 Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa,
- 3 Department of Clinical Research, University of Bern, Bern

### Introduction

The diagnostic utility of thrombin generation (TG) in patients with thrombophilia is unknown. We investigated the ability of TG to **discriminate** between patients with and without hereditary or acquired thrombophilia, to complement thrombophilia testing as a rule-out diagnostic tool in patients at high risk of arterial thrombosis or venous thromboembolism (VTE).

## Methods

TG was measured in all **non-anticoagulated** patients who underwent thrombophilia testing for factor V Leiden (FVL), prothrombin gene G20210A mutation (PTM), protein C, S and antithrombin deficiency (PCD, PSD, ATD), and antiphospholipid antibody syndrome (APS) because of previous VTE, unexplained arterial thrombosis or a positive family history for VTE over the period of 3 years using **ST-Genesia® instrument/STG-Thromboscreen® assay.** To assess the screening utility of TG, we calculated the area under the receiver operating curve (AUC), and thresholds for 85%, 95% and 99% sensitivity, followed by associated positive and negative predictive values and likelihood ratios of each TG parameter for all investigated thrombophilias. To assess the **clinical utility**, cohort-related diagnostic failure rates (% of false negative) and the diagnostic yield (% in whom thrombophilia could be ruled out) were also calculated.


# Results

Out of 804 screened patients, **467** (median age 43, interquartile range 32 – 56; 59% female) could be included in the analysis. Most patients were referred because of previous VTE (n = 283, 61%). Thrombophilia testing was positive in 161 patients (35%). Normalized endogenous thrombin potential (ETP) effectively discriminated for ATD (AUC =79 [95 %CI 72–87]) and PTM (AUC 86 [95 %CI 79 –93]) while ETP inhibition with thrombomodulin discriminated for PCD/PSD (AUC 90 [95 %CI 85–95]) (Figure 1B, A). Using the established best-performing TG parameter cut-offs (Table 1), PCD/PSD, PTM, ATD, and low-risk APS could be safely (<3 % failure rate) excluded in 62 %, 58 %, 27 %, and 29 % of cohort patients, respectively.

# Conclusion

TG assessment using ST-Genesia® system shows promise as a supportive screening tool in the thrombophilia work-up, safely avoiding further testing in at least a quarter of patients and reducing testing-related costs. Incorporating TG into the thrombophilia testing framework could enable a more individualised approach to the **diagnostic and clinical management** of patients with high thrombotic risk.

Figure 1. Diagnostic accuracy of ETP inhibition with TM (A), normalized ETP (B) for all investigated thrombophilias



Abbreviations: APS, antiphospholipid antibody syndrome; ATD, antithrombin deficiency; ETP, endogenous thrombin potential; FVL, factor V Leiden; PCD, protein C deficiency; PSD, protein S deficiency; PTM, prothrombin gene G20210A mutation; TM, thrombomedulin

**Table 1.** Overall diagnostic performance of clinical utility of selected thrombin generation parameter to exclude all types of investigated thrombophilias.

|                                         | TG<br>parameter      | Cutoff | Sensitivity<br>(95 % CI) | NPV (95 %<br>CI)    | Negative<br>LHR (95 %<br>CI) | Post-test<br>probability, %<br>(failure rate) | Proportion<br>of patients<br>below the<br>cutoff (yield,<br>%) |
|-----------------------------------------|----------------------|--------|--------------------------|---------------------|------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| Protein C and S deficiency              | ETP + TM,<br>nM/min  | 734.0  | 88.2<br>(65.7-97.7)      | 99.5<br>(98.1-99.9) | 0.17<br>(0.05-0.62)          | 0.6                                           | 62.1                                                           |
| Antithrombin deficiency                 | Normalized ETP, %    | 87.3   | 97.5<br>(87.1-99.6)      | 98.9<br>(94.3-99.8) | 0.09<br>(0.01-0.64)          | 0.8                                           | 26.8                                                           |
| Factor V Leiden mutation                | ETP + TM,<br>nM/min  | 470.0  | 85.9<br>(76.0-92.2)      | 92.1<br>(86.1-95.7) | 0.48<br>(0.26-0.86)          | 7.8                                           | 27.2                                                           |
| Prothrombin gene<br>G20210A<br>mutation | Normalized<br>ETP, % | 102.0  | 90.0<br>(69.9-97.2)      | 99.3<br>(97.3-99.8) | 0.17<br>(0.05-0.63)          | 0.8                                           | 57.8                                                           |
| Antiphospholipid antibody syndrome      | Start tail ratio     | 0.98   | 95.1<br>(83.9-98.7)      | 98.3<br>(94.2-99.5) | 0.17<br>(0.04-0.67)          | 1.6                                           | 29.1                                                           |

Abbreviations: Cl, confidence interval; ETP, endogenous thrombin potential; TM, thrombomodulin; TG, thrombin generation PPV, positive predictive value, NPP, negative predictive value, LHR, likelihood ratio.

Presented at SOHC 2025 from 19 – 21 November 2025